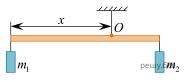
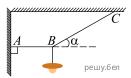
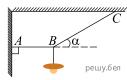
1. Рабочий удерживает за один конец однородную доску массой m=14 кг так, что она упирается другим концом в землю и образует угол $\alpha=60^\circ$ с горизонтом (см. рис.). Если \vec{F} , с которой рабочий действует на доску, перпендикулярна доске, то модуль этой силы равен:


1) 35 H 2) 61 H 3) 70 H 4) 121 H 5) 140 H.

2. Рабочий удерживает за один конец однородную доску массой m=19 кг так, что она упирается другим концом в землю и образует угол $\alpha=45^\circ$ с горизонтом (см. рис.). Если сила \vec{F} , с которой рабочий действует на доску, перпендикулярна доске, то модуль этой силы равен:



1) 40 H 2) 48 H 3) 67 H 4) 135 H 5) 190 H


3. Однородный стержень длиной l=1,4 м и массой m=4,0 кг подвешен на нити в точке O и расположен горизонтально. К концам стержня на невесомых нитях подвешены два тела массами $m_1=2,0$ кг и $m_2=5,0$ кг (см. рис.). Если система находится в равновесии, то расстояние x от точки O до левого конца стержня равно ... см.

4. На лёгких нитях AB и BC подвешена лампа. Нить BC расположена под углом $\alpha = 30$ ° к горизонту (см. рис.). Если модуль силы натяжения нити BC составляет F = 1,8 H, то масса m лампы равна ... ε .

5. На лёгких нитях AB и BC подвешена лампа. Нить BC расположена под углом $\alpha = 30^\circ$ к горизонту (см. рис.). Если модуль силы натяжения нити BC составляет F = 1,6 H, то масса m лампы равна ... Γ .

